
Section 20

Lecture 7
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Plan

Estimators (Horvitz Thompson).
Generalization
IPW

Using such estimators in trials.
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Logistic regression

Suppose Y → {0, 1}. Define ω = [ω1, ω2, . . . , ωk ]
T as a vector of k parameter

and consider a k dimensional covariate X. Then the logistic model is defined as

logit(E[Yi | Xi ]) = logit(pi ) = log

(
pi

1↑ pi

)
= ωT

Xi ,

or, equivalently, we can write that that Y follows a Bernoulli distribution,

P(Yi = y | Xi ) = pi
y (1↑ pi )

1→y =

(
e
ωT

Xi

1 + eω
TXi

)y (
1↑ e

ωT
Xi

1 + eω
TXi

)1→y

=
e
ωT

Xi ·y

1 + eω
TXi

.

Thus the likelihood is L(ω) =
∏n

i=1
pi

Yi (1↑ pi )1→Yi , which can be solved
numerically, e.g. solving the score equations (you can derive this from the
log-likelihood, take derivatives wrt. ω).

n∑

i=1

(
1
Xi

)(
Yi ↑

exp(ωT
Xi )

1 + exp(ωTXi )

)
= 0.
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M-estimation, preliminaries

Consider a generic statistical model, and suppose we have i.i.d. random
vectors Z1, . . . ,Zn where Z ↓ PZ (z) from this model. Let ε be a k

dimensional parameter. If ε fully characterizes PZ (z), then we write
PZ (z ; ε). Let ε0 denote the true value of ε. It follows that if ε fully
characterizes PZ (z), then the true density is PZ (z ; ε0).
We are considering the (classical) statistical problem of deriving an
estimator for ε.

Mats Stensrud Randomisation and Causation Spring 2025 202 / 422



Definition of an M-estimator

Definition (M-estimator)

An M-estimator for ε is the solution ε̂ (assuming that it exists and is well
defined) to the (k ↔ 1) system of estimating equations

n∑

i=1

M(Zi ; ε̂) = 0,

We say that M(z ; ε) = {M1(z ; ε), . . . ,Mk(z ; ε)}T is an unbiased

estimating function for Eω(M(Zi ; ε)) = 0. The expectation is taken wrt.
the distribution of Z at the law indexed by ε. From now on, we will
suppress the subscript when we evaluate the expectation in the true value
ε0, i.e. E(M(Zi ; ε)) ↗ Eω0(M(Zi ; ε)).
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MLE is an M-estimator

Consider a fully parametric model PZ (z ; ε). Define,

M(z ; ε) =
ϑ log(PZ (z ; ε))

ϑε
,

where the right hand side is a k dimensional vector of partial derivatives.
Solving an estimating equation with this M(z ; ε) yields a maximum
likelihood estimator (MLE), and thus the MLE is an M-estimator.
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Methods of moment estimators are M-estimators

Consider a fully parametric model PZ (z ; ε). Define,

Mm(Zi ; ε) = Z
m
i ↑ Eω(Z

m
i ),

where m = 1, . . . , k , i.e. k is the dimension of ε.
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Overview of properties of M-estimators

Theorem (M-estimator)

Under suitable regularity conditions, ε̂ is a consistent and asymptotically

normal estimator,

ε̂
P↑↘ ε0

and ≃
n(ε̂ ↑ ε0)

D↑↘ N (0,!),

where ! is a covariance matrix.
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Su!cient regularity conditions for M-estimators

Suppose that the following regularity conditions hold:

1 supω→! |Mn(ε)↑M0(ε)|
P↑↘ 0.

2 For all ϖ > 0, inf{|M0(ε)| : d(ε, ε0) ⇐ ϖ} > 0 = |M0(ε0)|.
For this condition it is su”cient that there exists a unique solution, #
is compact and M is continuous.

3 Mn(ε̂n) = oP(1).

where Mn(ε) = En(M(Z ; ε)) is the expectation over the empirical
distribution and M0(ε) = E(M(Z ; ε)) over the true data generating law.

Mats Stensrud Randomisation and Causation Spring 2025 207 / 422



Proof that the conditions above are su!cient for the
consistency of M-estimators

Proof.
From the 2nd condition, for all ϖ > 0 there is a ϑ > 0 such that

P(d(ε̂n, ε0) ⇐ ϖ)

⇒P(|M0(ε̂n)|↑ |M0(ε0)| ⇐ ϑ)

=P(|M0(ε̂n)|↑ |Mn(ε̂n)|+ |Mn(ε̂n)|↑ |Mn(ε0)|+ |Mn(ε0)|↑ |M0(ε0)| ⇐ ϑ)

⇒P(|M0(ε̂n)|↑ |Mn(ε̂n)| ⇐
ϑ

3
) + P(|Mn(ε̂n)|↑ |Mn(ε0)| ⇐

ϑ

3
)+

P(|Mn(ε0)|↑ |M0(ε0)| ⇐
ϑ

3
).

Condition 1 implies that the first and third probabilities go to zero.
Condition 3 implies that the second goes to zero.
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Example: Smoking Cessation A on weight gain Y .

1566 cigarette smokers aged 25-74 years. The outcome weight gain measured
after 10 years.

Miguel A Hernan and James M Robins. Causal inference: What if? CRC Boca
Raton, FL:, 2018.
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On estimation of causal e”ects

From slide 57, remember that in an experiment where A is randomised
conditional on L – or more generally when consistency, positivity and
exchangeability (Y a ⇑⇑ A | L) hold – we have that

E(Y a) =
∑

l

E(Y | L = l ,A = a) Pr(L = l)

= E
[
I (A = a)

ϱ(A | L) Y
]
,

where ϱ(a | l) = P(A = a | L = l).
This equality motivates di$erent estimators.

Mats Stensrud Randomisation and Causation Spring 2025 210 / 422



Regression estimator

We can also write

E(Y a) =
∑

l

E(Y | L = l ,A = a) Pr(L = l)

= E(E(Y | L,A = a)),

where the outer expectation in the second line is with respect to the
marginal of L. Denote

E(Y | L = l ,A = a) = Q(l , a).

Q(l , a) is usually unknown, even in an experiment.
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Regression estimator

Consider a parametric regression model Q(l , a;ω) of Q(l , a); that is a linear or
nonlinear function of (l , a) and the finite-dimensional parameter ω.
We estimate ω from the observed data. For example, we could in our conditional
randomised trial pose a simple linear model

Q(l , a;ω) = ω1 + ω2a+ ωT
3 l ,

which can be fitted with least squares methods.
If the outcome is binary (Y → {0, 1}), we could fit a logistic regression model
such as

logit{Q(l , a;ω)} = ω1 + ω2a+ ωT
3 l .

We can fit the logistic regression models with maximum likelihood estimators.

Definition (Correctly specified model)

A model is correctly specified if there exists a value ω0 such that Q(l , a;ω)
evaluated at ω0 yields the true function Q(l , a).

PS: As in any regression setting, the models we have posited may or may not be
correctly specified.
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Example continues

We can estimate the conditional sample mean Ê(Y | A = 1) = 4.5 in
quitters and Ê(Y | A = 0) = 2.0 in non-quitters. More specifically,
the di$erence is

Ê(Y | A = 1)↑ Ê(Y | A = 0) = 2.5 (95% CI : 1.7, 3.4),

but we will not assign a causal interpretation to the estimate.

Let L include the baseline variables sex (0: male, 1: female), age (in
years), race (0: white, 1: other), education (5 categories), intensity
and duration of smoking (number of cigarettes per day and years of
smoking), physical activity in daily life (3 categories), recreational
exercise (3 categories), and weight (in kg).

Suppose A ⇑⇑ Y
a | L.
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Standardization: A natural way of estimating
counterfactual outcomes

If we knew Q(l , a), a natural way of estimating E(Y a) is by the empirical average

1

n

n∑

i=1

Q(Li , a),

motivated by the identification formula expression E(E(Y | L,A = a)). When we
do not know Q(l , a), but we assume that our model Q(Li , a;ω) is correctly
specified, we can use the outcome regression estimator to get the estimator

µ̂REG (a) =
1

n

n∑

i=1

Q(Li , a; ω̂).

For example, using the linear estimator from the previous slide, we can estimate
E(Y a=1) - E(Y a=0) by

1

n

n∑

i=1

Q(Li , 1; ω̂)↑
1

n

n∑

i=1

Q(Li , 0; ω̂) = ω̂2,

that is, the regression parameter is the causal e$ect.
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More broadly, our causal e”ects are not equal to regression
coe!cients

Whereas the causal e$ect turned out to be equal to a regression
coe”cient in the previous slide, regression coe”cients are not
necessarily equal to our causal e$ect of interest.

For example, the coe”cients in the logistic regression model

logit{Q(l , a;ω)} = ω1 + ω2a+ ωT
3 l

do not necessarily translate to a causal e$ect of interest.
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Standardization

We say that standardization is a plug-in g-formula estimator because it
simply replaces the conditional means and probabilities in the g-formula by
their estimates.
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Section 21

Propensity score methods

Mats Stensrud Randomisation and Causation Spring 2025 217 / 422



Matching on the propensity score (intuitive motivation)

In your homework you showed that, for all a,

Y
a ⇑⇑ A | L =⇓ Y

a ⇑⇑ A | ϱ(a | L).

We could, for each treated individual (i.e. individual with A = 1),
match this individual with an untreated individual with similar

propensity score.

Then crudely compare the mean in the two groups.

This crude comparison should be fine, but...

Potential problems:
What does ”similar” propensity score mean?
How many matches should we choose?
Do we really get the average treatment e$ect?
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Conditioning on the propensity score

Because, for all a,

Y
a ⇑⇑ A | L =⇓ Y

a ⇑⇑ A | ϱ(a | L),

it follows that E(Y a | ϱ(a | L) = s) = E(Y | A = a,ϱ(a | L) = s).
Thus, we could imagine estimating E(Y | A = a,ϱ(a | L) = s). Because
ϱ(a | l) → (0, 1) is usually a continuous variable, we will usually not see
individuals with the same value s among the treated and untreated.
However, we could

fit an outcome regression to E(Y a | ϱ(a | L) = s), and

match units i , j such that d(si , sj) < ϑ for ϑ > 0. For example
percentiles. This is an ad hoc strategy, which works well in some
practical settings, but we will not pursue it further.
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Motivation for inverse probability weighting (IPW)

We would like to adjust for confounding: intuitively, imbalance
between L’s among those who are treated and untreated.

Suppose that we find a treated subject i , who due to confounders was
unlikely to be treated. That is, ϱ(1, Li ) is small.

We upweigh her, so that she represents herself but also the others like
herself (in terms of L) who were unexposed.

Similarly, we upweigh untreated individuals with a small value of
ϱ(0, Li ).

Heuristically, we can think about the weighted sample as a
pseudopopulation where we observe each individual for each exposure
level. In particular, ϱ↑(0, Li ) = ϱ↑(1, Li ) for all i in the weighted
population (which we indicate by the ⇔).
In this pseudopopulation, confounders are balanced between
treatment groups, and a crude comparison estimates a causal e$ect
(Intuitively, we get a new DAG for this pseudopopulation, where the
arrow from L to A is omitted).
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Motivating example

Suppose the counterfactual data are:

and the average treatment e$ect E(Y a=1)↑ E(Y a=0) = 1.
but we observe:

The naive contrast E(Y | A = 1)↑ E(Y | A = 0) = 7

4
↑ 6

5
= 0.55.

Example from Oliver Dukes.
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Example continues

However, from the table we see that,

ϱ̂(1, group A) =
2

3
,

ϱ̂(1, group B) =
1

3
,

ϱ̂(1, group C) =
1

3
.

Let us estimate E(Y a=1) by a weighted average, where each observation is
weighted by 1

ω̂(1,group X)
,Group X → {Group A,Group B,Group C},

(1 + 1) 3
2
+ 2 3

1
+ 3 3

1

3

2
+ 3

2
+ 3

1
+ 3

1

= 2.

and estimate E(Y a=0) by weighting each observation by 1

ω̂(0,Group X)
,

Group X → {Group A,Group B,Group C},

0 3

1
+ (1 + 1) 3

2
+ (2 + 2) 3

2

3

1
+ 3

2
+ 3

2
+ 3

2
+ 3

2

= 1.
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